从应用的角度出发,介绍合理设计应用电路和合理选择的种类与型号,来克服普遍存在的主要缺点的方法。文章具有较强的针对性和可操作性,对数字电位器的应用实践具有指导作用。
数字电位器与机械式电位器相比,具有可程控改变阻值、耐震动、噪声小、寿命长、抗污染等重要优点,因而,已在自动检测与控制、智能仪器仪表、消费类电子产品等许多重要领域得到成功应用。但是,数字电位器额定阻值误差大、温度系数大、通频带较窄、滑动端允许电流小(一般1~3mA)等,这在很大程度上了它的应用。本文从应用的角度出发,讨论克服这些主要特点的方法。数字电位器的额定阻值误差大,一般在(20~30)%,主要是由p型硅扩散层的表面电阻率及内部开关的导通电阻等工艺方面的差异引起的。数字电位器的温度系数也大,如MCP4××××系列(Microchip公司)为800ppm/℃,这是半导体器件共有的缺点。但是,每个数字电位器中每一级电阻值的增量一致性很好;在双数字电位器、三数字电位器和四数字电位器中,各个电位器的阻值是精密匹配的(因工艺相同)。据此,合理设汁应用电路和恰当选择数字电位器的型号,可充分利用精密匹配的优点,大大减小额定阻值误差和温度系数造成的影响。
选择双数字电位器将可变增益差分放大器设计成图1(c)的形式[2](用单数字电位器作R2,R4为固定电阻),则可始终保持集成运放的同相端和反相端对外的电阻相等,从而始终保持很高的CMRR,亦即了温漂误差。
用数字电位器构成分压器时可设计成图2的形式(原理上可以不用R1和R2)。由集成运放构成的电压跟随器起隔离作用,R1和R2为高精度电阻。根据输出电压调节范围的要求,恰当选择R1和R2的阻值,以数字电位器的两部分电阻RA和RB之比(RA/RB)有适当的值。这种设计有两个优点:其一,高精度电阻与数字电位器可削弱数字电位器温度系数引起的误差;其二,虽然数字电位器的RA和RB的阻值误差和温度系数都大,但两者之比的误差要小得多。因此,这种设计能得到较高精度的分压。顺便指出,少数数字电位器,如MAX5400/5401只有50ppm/℃,它们是低漂移应用的理想选择。
数字电位器的通频带一般较窄,如X系列(Xicor公司)有些型号的-3dB带宽只有32~36kHz。主要原因是数字电位器内存在杂散电容,频率响应受RC时间的。
测试表明:通频带宽度主要与其额定阻值的大小和滑动端与地之间的滤波电容的容量有关。额定阻值越小,通频带越宽,表1[3]给出了部分X系列数字电位器-3dB带宽的测试结果(滑动端位于中点)。
受CMOS工艺的,数字电位器的滑动端允许通过的电流较小,一般不超过3mA,电流过大会使器件过早失效。实践中可在滑动端后接一电压跟随器(一般由集成运放构成;也有的数字电位器内含电压跟随器,如X9438),这样既可以扩大电流(通用集成运放的最大输出电流为15mA左右),又能隔离负载(后级电路)对数字电位器的影响。
为了得到更大的电流,本人用集成三端稳压器设计了图3所示的大电流线为单电源通用集成运放,LM317为正电压可调集成三端稳压器。LM358接成电压跟随器,输出电压跟随分压器的输出电压V0。电压跟随器的输入电阻Ri≥400MΩ(Ri相当于分压器的负载电阻RL),输出电阻R0≤1Ω。满足(RL/R)→∞的条件(R为数字电位器的额定阻值),故从根本上消除了传感器负载特性的非线的内部电路结构和工作原理可知,稳压电路的输出电压可写为
因LM317具有优良的稳压性能(电流调整率约为0.3%),故允许负载回路电流I′0在零到LM317的最大输出电流之间变化。常见的LM317的最大输出电流在100mA至数安培不等(与LM317的具体型号有关)。综上,本设计既从根本上消除了分压器负载特性的非线性,又很好地解决了分压器负载能力弱的问题。
在图3中,电容C1和C0分别为稳压电路的输入电容和输出电容;二极管D1、D2均为LM317的二极管;电容C用于滤除电压跟随器输出电压中的纹波和干扰。
测试表明:该电路充分利用了集成三端稳压器稳压性能好、输出电流大的优点,输出50mA电流时的最大非线L),作为大电流线性分压器具有良好的性能。
数字电位器一般不能直接接负电源,但在构成分压器时,有时需要输出正、负电压,此时可采用图4所示的电路。虽然输出V0不能得到VDD~VSS全范围的分压,但适当选取R1和R2的阻值,仍可得到一定范围可正可负的分压输出。
不同型号的数字电位器的控制信号时序不尽相同,在实践中必须严格遵守其时序,否则,可能工作异常。注意:控制信号波形的畸变会导致数字电位器工作异常。一种简单有效的解决方法是在控制信号端与地之间接一小滤波电容,但该电容的容量选取要合适,过大会使脉冲信号的上升沿(下降沿)变缓,引起时序问题,过小抗干扰效果差,具体数值可以估算,也可以根据经验选取。如用数字电位器AD8042,控制信号来自单片机8031的P1口,设其内部上拉电阻值为1kΩ,滤波的截止频率ω0=1/RC≤50MHz,可得C≥0.02nF,又由于8031的P1脚发出的脉冲最小宽度为2μs(晶振为6MHz),所以τ=RC≤2μs,即C≤2nF,C值应在0.02nF至2nF(晶振为6MHz)之间选取。实践表明,在晶振为6MHz的8031系统中,选用1nF的滤波电容,效果很好。此外,数字电位器的阻值变化规律以线性的为多见,但也有按对数规律变化的,如X9514、DS1661、DS1801等。用于音响系统的音量调节时应注意选择对数规律的(以符合人耳的听觉特性),若选择线性规律的,则要设法模拟阻值的对数变化,使应用复杂化。若数字电位器由机械按键开关控制,则应采取可靠的去抖动措施消除开关抖动的影响。由RS触发器(可由门电路构成)和机械开关构成去抖动开关电路是一种简单、有效的措施。RC去抖动的作用是很有限的,不宜用于这类场合。
在将数字电位器用作放大器的负反馈电阻时,必须防止使用过程中可能出现的瞬间失效。因为瞬间失效会使集成运放处于开环状态,放大器增益很大,过大的输出信号可能造成后级电路损坏或其他不良后果。对放大器的后级电路的输入箝位是一种简单、有效的措施。
目前市场上数字电位器以Xicor、MAXIM、DALLAS、MicrochiP、AD等公司的产品为多见,种类和型号繁多,性能各有不同。在实践中要注意以下三点:第一,对数字电位器的基本原理、主要性能和基本用法要有较全面的了解。这是选用数字电位器的基础;第二,根据实际应用需要,兼顾应用效果和简化应用设计两方面,合理选择数字电位器的种类与型号。目前价格已不再是选型时考虑的主要因素;第三,合理设计能有效克服数字电位器的缺点,扩大其应用范围。所以,本文的讨论对数字电位器的应用实践具有指导作用。